UtilityFunctions
- class Dock2D.Utility.UtilityFunctions.UtilityFunctions(experiment=None, model_name=None)
- check_model_gradients(model)
- Check current model parameters and gradients in-place. Specifically if weights are frozen or updating 
 - make_boundary(grid_shape, gaussian_blur_bulk=False)
- Create the boundary feature for data generation and unit testing. - Parameters
- grid_shape – input shape grid image 
- Returns
- features stack with original shape as “bulk” and created “boundary” 
 
 - orthogonalize_feats(scoring_weights, feat_stack)
- Orthogonalize learned shape features for single shape. - Parameters
- scoring_weights – learned scoring coefficients from scoring function 
- feat_stack – feature stack for one shape [bulk, boundary] 
 
- Returns
- orthogonalized feature stack 
 
 - plot_assembly(receptor, ligand, gt_rot, gt_txy, pred_rot=None, pred_txy=None, tiling=False, interaction_fact=False)
- Plot the predicting docking pose for the IP task. From left to right, plots the ground truth docking pose, the pose passed into the model, and the predicted docking pose. - Parameters
- receptor – receptor shape grid image 
- ligand – ligand shape grid image 
- gt_rot – ground truth rotation 
- gt_txy – ground truth translation [x, y] 
- pred_rot – predicted rotation 
- pred_txy – predicted translation [x, y] 
 
- Returns
- plotting object with specified poses 
 
 - plot_features(rec_feat, lig_feat, scoring_weights, plot_count=0, stream_name='trainset', model_name=None)
- Plot the learned shape pair features (bulk and boundary) from the docking model from Docking in model_docking.py. - Parameters
- rec_feat – receptor feature stack 
- lig_feat – ligand feature stack 
- receptor – receptor shape grid image 
- ligand – ligand shape grid image 
- scoring_weights – learned scoring coefficients used in scoring function 
- plot_count – plotting index used in titles and filename 
- stream_name – data stream name 
 
 
 - plot_predicted_pose(receptor, ligand, gt_rot, gt_txy, pred_rot, pred_txy, plot_count, stream_name)
- Plotting helper function for - plot_assembly().- Parameters
- receptor – receptor shape grid image 
- ligand – ligand shape grid image 
- gt_rot – ground truth rotation 
- gt_txy – ground truth translation [x, y] 
- pred_rot – predicted rotation 
- pred_txy – predicted translation [x, y] 
- plot_count – plotting index used in titles and filename 
- stream_name – data stream name 
 
 
 - plot_rotation_energysurface(fft_score, pred_txy, num_angles=360, stream_name=None, plot_count=0, plot_pub=False)
- Plot the lowest energy translation index from fft_score per rotation angle as an energy surface curve. - Parameters
- fft_score – FFT scores generated using a docker method. 
- pred_txy – predicted translation [x, y] 
- num_angles – number of angles used to generate fft_score 
- stream_name – data stream name 
- plot_count – plotting index used in titles and filename 
 
 
 - read_pkl(filename)
- Parameters
- filename – filename.pkl to load 
- Returns
- data 
 
 - rotate(repr, angle)
- Rotate a grid image using 2D rotation matrix. - Parameters
- repr – input grid image 
- angle – angle in radians 
 
- Returns
- rotated grid image 
 
 - rotate_gridligand(ligand, rotation_angle)
- Rotate grid image in degrees using scipy.ndimage.rotate(), an alternative rotation function for - plot_assembly()- Parameters
- ligand – grid image of ligand 
- rotation_angle – angle in degrees 
 
- Returns
- rotated ligand 
 
 - swap_quadrants(input_volume)
- FFT returns features centered with the origin at the center of the image, not at the top left corner. - Parameters
- input_volume – FFT output array 
 
 - translate_gridligand(ligand, tx, ty)
- Translate grid image using scipy.ndimage.shift() for - plot_assembly()- Parameters
- ligand – grid image of ligand 
- tx – x dimension translation 
- ty – y dimension translation 
 
- Returns
- translated ligand 
 
 - weights_init(model)
- Initialize weights for SE(2)-equivariant convolutional network. Generally unused for SE(2) network, as e2nn library has its own Kaiming He weight initialization. 
 - write_pkl(data, filename)
- Parameters
- data – to write to .pkl file 
- filename – specify filename.pkl