Examples
Some examples on how to use certain layers.
Fitting backbone using reduced protein model.
First we read the pdb file using FullAtomModel.PDB2CoordsUnordered:
#Reading pdb file
p2c = FullAtomModel.PDB2CoordsUnordered()
coords_dst, chain_names, res_names_dst, res_nums_dst, atom_names_dst, num_atoms_dst = p2c(["FullAtomModel/f4TQ1_B.pdb"])
The variable coords_dst contains all coordinates, read from the pdb, majority of them do not belong to the backbone. Therefore
our next step is to select only CA, C and N atoms using atom_names_dst tensor. First let's construct the mask:
#Making a mask on CA, C, N atoms
is0C = torch.eq(atom_names_dst[:,:,0], 67).squeeze()
is1A = torch.eq(atom_names_dst[:,:,1], 65).squeeze()
is20 = torch.eq(atom_names_dst[:,:,2], 0).squeeze()
is0N = torch.eq(atom_names_dst[:,:,0], 78).squeeze()
is10 = torch.eq(atom_names_dst[:,:,1], 0).squeeze()
isCA = is0C*is1A*is20
isC = is0C*is10
isN = is0N*is10
isSelected = torch.ge(isCA + isC + isN, 1)
num_backbone_atoms = int(isSelected.sum())
The tricky operation that is not yet implemented in pytorch is or, we substitute it for torch.ge(isCA + isC + isN, 1).
Logical and is implemented using multiplication of byte tensors. Notice, that this mask applies to atoms, not coordinates.
Therefore we have to select each coordinate separately and then stack selected tensors:
#Resizing coordinates array for convenience
N = int(num_atoms_dst[0].item())
coords_dst.resize_(1, N, 3)
backbone_x = torch.masked_select(coords_dst[0,:,0], isSelected)[:num_backbone_atoms]
backbone_y = torch.masked_select(coords_dst[0,:,1], isSelected)[:num_backbone_atoms]
backbone_z = torch.masked_select(coords_dst[0,:,2], isSelected)[:num_backbone_atoms]
backbone_coords = torch.stack([backbone_x, backbone_y, backbone_z], dim=1).resize_(1, num_backbone_atoms*3).contiguous()
Now, that we have our backbone atoms in the correct tensor layout, we prepare ReducedModel.Angles2Backbone layer:
#Setting conformation to alpha-helix
num_aa = torch.zeros(1, dtype=torch.int, device='cuda').fill_( int(num_backbone_atoms/3) )
num_atoms = torch.zeros(1, dtype=torch.int, device='cuda').fill_( int(num_backbone_atoms) )
angles = torch.zeros(1, 3, int(num_backbone_atoms/3), dtype=torch.float, device='cuda').normal_().requires_grad_()
a2b = ReducedModel.Angles2Backbone()
rmsd = RMSD.Coords2RMSD()
optimizer = optim.Adam([angles], lr = 0.05)
We fill the initial angles using normal distribution to make the problem slightly more challenging.
Here we have separate tensors for number of atoms and number of amino-acids (num_aa) and take into account
that each amino-acid is represented by three atoms in reduced model. Next, we want to have a movie of the fitting process, therefore we
will have to rotate and translate each structure to align them:
loss_data = []
g_src = []
g_dst = []
#Coords transforms
c2c = FullAtomModel.Coords2Center()
translate = FullAtomModel.CoordsTranslate()
rotate = FullAtomModel.CoordsRotate()
#Rotating for visualization convenience
with torch.no_grad():
backbone_coords = rotate(backbone_coords, torch.tensor([[[0, 1, 0], [-1, 0, 0], [0, 0, 1]]], dtype=torch.float, device='cuda'), num_atoms)
The main loop is rather standard:
for epoch in range(300):
optimizer.zero_grad()
coords_src = a2b(angles, num_aa)
L = rmsd(coords_src, backbone_coords, num_atoms)
L.backward()
optimizer.step()
loss_data.append(L.item())
However, inside this loop we align the structures and save them for plotting:
#Obtaining aligned structures
with torch.no_grad():
center_src = c2c(coords_src, num_atoms)
center_dst = c2c(backbone_coords, num_atoms)
c_src = translate(coords_src, -center_src, num_atoms)
c_dst = translate(backbone_coords, -center_dst, num_atoms)
rc_src = rotate(c_src, rmsd.UT.transpose(1,2).contiguous(), num_atoms)
rc_src = rc_src.resize( int(rc_src.size(1)/3), 3).cpu().numpy()
c_dst = c_dst.resize( int(c_dst.size(1)/3), 3).cpu().numpy()
g_src.append(rc_src)
g_dst.append(c_dst)
Then after plotting RMSD loss versus iteration:
fig = plt.figure()
plt.title("Backbone fitting")
plt.plot(loss_data)
plt.xlabel("iteration")
plt.ylabel("rmsd")
plt.savefig("ExampleFitBackboneTrace.png")
We obtain:
Next we plot aligned structures that we saved during optimization:
#Plotting result
fig = plt.figure()
plt.title("Reduced model")
ax = p3.Axes3D(fig)
sx, sy, sz = g_src[0][:,0], g_src[0][:,1], g_src[0][:,2]
rx, ry, rz = g_dst[0][:,0], g_dst[0][:,1], g_dst[0][:,2]
line_src, = ax.plot(sx, sy, sz, 'b-', label = 'pred')
line_dst, = ax.plot(rx, ry, rz, 'r.-', label = 'target')
def update_plot(i):
sx, sy, sz = g_src[i][:,0], g_src[i][:,1], g_src[i][:,2]
rx, ry, rz = g_dst[i][:,0], g_dst[i][:,1], g_dst[i][:,2]
line_src.set_data(sx, sy)
line_src.set_3d_properties(sz)
line_dst.set_data(rx, ry)
line_dst.set_3d_properties(rz)
return line_src, line_dst
anim = animation.FuncAnimation(fig, update_plot,
frames=300, interval=20, blit=True)
ax.legend()
anim.save("ExampleFitBackboneResult.gif", dpi=80, writer='imagemagick')
And the resulting movie should look like this: